lunes, 23 de noviembre de 2015

SEMANA XIV :LOS GEOSINTETICOS

 
LOS GEOSINTETICOS

Los Geosintéticos son un grupo de materiales fabricados mediante la transformación industrial de substancias químicas denominadas polímeros, del tipo conocido genéricamente como “plásticos”, que de su forma elemental, de polvos o gránulos, son convertidos mediante uno o más procesos, en láminas, fibras, perfiles, películas, tejidos, mallas, etc., o en compuestos de dos o más de ellos, existiendo también algunas combinaciones con materiales de origen vegetal.
Aunque en la naturaleza existen de manera natural, substancias poliméricas, como la seda y la celulosa, la diferencia con los geosintéticos, es que estos últimos son fabricados por el hombre, a partir de productos obtenidos de la refinación del petróleo.
Otra característica particular  de los geosintéticos es que su aplicación se relaciona con la actividad de la construcción, por lo que participan como parte integral de sistemas y estructuras que utilizan materiales de construcción tradicionales, como suelos, roca, agregados, asfaltos, concreto, etc.
Sus funciones dentro de tales estructuras son las de complementar, conservar, o bien mejorar el funcionamiento de los sistemas constructivos e inclusive, en algunos casos, sustituir por completo algunos materiales y procesos de la construcción tradicional.

PROPIEDADES GENERALES DE LOS GEOSINTETICOS, A PARTIR DE SU NATURALEZA POLIMERICA.

Los plásticos son los componentes principales en los geosintéticos. En la actualidad, muchas industrias sustituyen ventajosamente materiales tradicionales tales como agregados, suelos, metal, vidrio, etc., por materiales de plástico, que poseen, en general, las siguientes propiedades:
- Ligereza, existiendo materiales menos densos que el agua.
- Ductilidad
- Maleabilidad
- Elevada elasticidad
- Resistencia Mecánica

- Resistencia a agentes químicos, la cual varía dependiendo del material

- Posibilidad de  mejorar sus propiedades mediante aditivos o procesos mecánico - térmicos
- Rangos variables de resistencia al intemperismo, existiendo algunos que deben ser protegidos y otros que pueden ser expuestos a la intemperie por lapsos largos, sin experimentar deterioro.
- Baja absorción de agua
- Resistencia a la biodegradación, la cual varía según el material de que se trate
La familia de los Plásticos  es muy extensa. Los productos de esta naturaleza que se utilizan para fabricar geosintéticos es apenas una pequeña fracción de los polímeros que se utilizan en  la sociedad moderna.
En general, las propiedades específicas de un plástico dependen de la combinación de muchas variables, las cuales son,  entre otras:
  • Naturaleza química: Grupos funcionales, peso molecular, dispersión del peso molecular, ramificaciones de la cadena principal, incorporación química de componentes  (copolímeros), incorporación física de aditivos, tipo de formulación, etc.
  • Historia de  esfuerzos, temperaturas y exposición a agentes ambientales durante su vida útil.
  • Procesos de transformación o formado
  • Procesos de  acabado.
Es importante hacer notar que el nombre genérico de un plástico o polímero, tal como “Polipropileno”, “Polietileno de Alta Densidad”, “Poliéster”, etc., no es suficiente para caracterizarlo de manera completa, porque bajo la misma denominación pueden producirse diversos productos, con propiedades diferentes.

CLASIFICACION DE LOS GEOSINTETICOS 
 
La siguiente clasificación muestra los distintos Geosintéticos; de cada tipo existen distintas clases o subcategorías.
Geotextiles
Geomembranas
Georedes o Geomallas
Geodrenes
Geomantas 
Geoceldas
Geocompuestos de Bentonita

GEOTEXTILES
 
Resultado de imagen para geoTEXTILESLos geotextiles son telas con  diversas estructuras, cuyos elemento individuales son fibras, filamentos, o cintas de plástico, que siguiendo diversos patrones de distribución de sus elementos individuales, se reúnen y entrelazan entre sí por medio de diversos procesos que les someten a  acciones mecánicas, térmicas, químicas, o varias de ellas, obteniendo así, estructuras continuas, relativamente delgadas, porosas y  permeables en forma de hojas, que tienen resistencia en su plano.
Tipos de Geotextiles, según el proceso de su fabricación:
  • Geotextiles No Tejidos
  • Geotextiles Tejidos
Tipos de Geotextiles, según el polímero de su fabricación:
  • Geotextiles de Poliéster
  • Geotextiles de Polipropileno
Las propiedades de los Geotextiles son resultado de la combinación de su polímero base, de su estructura y de los procesos de acabado a que se sometió el material.
La estructura es el arreglo geométrico entre los  elementos individuales del producto, ya sean fibras cortadas, filamentos o cintas, y del tipo de unión entre los mismos, factores que resultan en un material específico.  1
El grupo con un uso más extendido, tanto en cantidad de aplicaciones como en consumo total, es el de los Geotextiles No Tejidos, que se caracterizan porque las fibras que los componen se distribuyen en forma desordenada, en todas direcciones.
Dentro de este grupo, es el de los Geotextiles No Tejidos Punzonados,el de mayor consumo mundial; en ellos, la unión entre sus fibras se logra mediante  entrelazamiento por la acción de agujas, con lo que se obtienen estructuras adaptables, pues sus fibras tienen una relativa  libertad de movimiento entre sí, lo que genera una importante elongación inicial, antes de entrar en tensión.
Su comportamiento bajo tracción se caracteriza por una relativamente baja carga en tensión inicial,  que corresponde a una elongación inicial  relativamente  alta (bajo  módulo inicial), lo que explica al alto grado de adaptabilidad  de este tipo de  geotextil, que le permite adaptarse a superficies   irregularidades,  sin ser dañado.
Tienen este tipo de  geotextiles, además,  muy alta porosidad y permeabilidad, tanto en su plano como a través de su plano, siendo filtros muy eficientes.  Son resistentes al bloqueo de sus poros con suelo bien graduado. El flujo a través de su estructura inicia con carga hidráulica muy baja. .
Una manera muy común de clasificarlos es por su masa por unidad de área, siendo los de uso más extendido  desde 140 hasta 400 g/m2, aunque existen de mucha mayor masa,  para aplicaciones especiales.
Por sus características ya descritas, los Geotextiles No Tejidos Punzonados, se utilizan para aplicaciones de Separación de Materiales, Filtración, Drenaje, Control de la Erosión y Prevención de la Reflexión de Grietas.
Los más pesados y resistentes se utilizan para Protección de Geomembranas, Estabilizacióny Refuerzo.
Otros Geotextiles No Tejidos. Algunos materiales son modificados posteriormente al punzonado, mediante fusión superficial de sus fibras, estiramiento a alta temperatura o aplicando tratamientos en su superficie, con resinas químicas y posterior horneado, con el fin de variar sus propiedades, con diferentes propósitos. 
Geotextiles No Tejidos Termosellados son aquellos que se obtienen por medio de la fusión de sus fibras, sobre las que se aplica presión  mediante rodillos calientes, lisos o con relieves, fusionando toda la superficie del material o sólo  áreas selectas del mismo.  
El resultado son geotextiles delgados en los que las fibras no tienen libertad de movimiento y su comportamiento es más tenaz. La permeabilidad del producto final es  menor cuando se usan rodillos lisos.
Otro grupo importante de geotextiles son los Geotextiles Tejidos, en los que su construcción  sigue un patrón geométrico claramente definido, que se logra por medio  del entrelazamiento de filamentos o cintas planas en dos direcciones mutuamente perpendiculares, mediante un proceso de urdido, por el cual es posible combinar diferentes tipos de filamentos en cualquiera de las direcciones del tejido, para obtener las propiedades de resistencia que se buscan, en las dos principales direcciones de fabricación. Estos geotextiles son menos rígidos en el sentido diagonal.
Dentro de este grupo de materiales tejidos,  son los Geotextiles Tejidos de Cinta Plana los de mayor volumen de uso; las cintas que los componen son planas, mejor conocidas como rafia. Debido a que su resistencia se tiene principalmente en los sentidos de fabricación y en el transversal a éste, se someten a un proceso de acabado térmico para reducir el movimiento relativo de las cintas. 
Su comportamiento bajo tracción muestra una carga en tensión inicial relativamente alta, con baja elongación (alto módulo inicial). Por ello su capacidad de  adaptación a superficies irregularidades filosas, como son subrasantes con presencia de roca, es baja. Su aplicación más exitosa es como refuerzo sobre estratos que experimentan asentamientos al construir, como son zonas de suelos saturados y pantanos, sin roca presente en la superficie, pues de este modo pueden desarrollar su capacidad de refuerzo a la tensión y mantener su integridad.
Sus aberturas son pequeñas y su permeabilidad baja respecto de los Geotextiles No Tejidos y de los Geotextiles Tejidos de Monofilamentos; sólo permiten flujo a través de su  plano, requiriendo para ello que exista un cierto valor de carga hidráulica, y poseen poca resistencia al bloqueo de sus poros con suelo bien graduado. Por lo anterior, no se usan para aplicaciones de filtración o que requieren alta permeabilidad.
Los tipos más usuales varían desde 140 hasta 280 g/m2.

Los Geotextiles Tejidos de Monofilamentos se componen por filamentos  de sección circular relativamente gruesos, con tamaños de aberturas claramente establecidas y mensurables mediante procedimientos sencillos. Según la combinación de los filamentos en las direcciones de fabricación y transversal se controla la permeabilidad y tamaño de abertura. Se utilizan en aplicaciones de filtración, y de refuerzo  en las que se requiere una alta permeabilidad. 
Su carga en tensión inicial es alta y su elongación es baja (alto módulo inicial). Por lo mismo, su capacidad de adaptarse a irregularidades es baja.
Sólo poseen flujo a través de su plano y su Permeabilidad es muy alta, no requiriendo la existencia de una carga hidráulica apreciable para establecer el flujo. Su resistencia al bloqueo con suelo, bien graduado o no, es muy alta y se considera su estructura muy favorable para el diseño de soluciones a casos críticos de filtración. 

Los Geotextiles Tejidos de Multifilamentos son producto del urdido de multifilamentos, mismos  que son el resultado del trenzado de varios filamentos de menor diámetro.  Son materiales con muy alta resistencia a la tensión y alto módulo de tensión.
Su carga en tensión inicial es muy alta y su elongación es baja. Su capacidad de adaptación a irregularidades es relativamente baja. Son el grupo de mayor resistencia a la tensión entre los geosintéticos utilizados para reforzar.
Su Permeabilidad es intermedia. Sólo se establece el flujo a través y no en su plano. Son resistentes al bloqueo de sus poros con suelo, bien raduado El flujo inicia con baja carga hidráulica.
Se utilizan primordialmente para aplicaciones de estabilización de terraplenes que se construyen sobre terrenos de muy baja capacidad de carga.
NOTAS
Las  comparaciones que se establezcan entre geotextiles deben ser entre materiales con igual masa  por unidad de área.
  • La masa por unidad de área y la construcción (estructura formada por sus componentes básicos) son los principales factores que  influyen  en las propiedades hidráulicas y mecánicas de los geotextiles.
  • El módulo es diferente al calculado para otros materiales, pues en los geotextiles no se toma en cuenta el espesor, por ser materiales con  alta relación de vacíos. El módulo inicial es la carga de tensión a elongaciones muy bajas.

GEOMEMBRANAS
 
La Geomembranas son láminas de muy baja permeabilidad que se emplean como barreras hidráulicas; se fabrican en diversos espesores y se impacan como rollos que se unen entre sí mediante técnicas de termofusión, extrusión de soldadura, mediante aplicación de adhesivos, solventes o mediante vulcanizado, según su naturaleza química.
Tipos de Geomembranas, según el proceso de su fabricación:
  • Geomembranas No Reforzadas
  • Geomembranas Reforzadas
Tipos de Geomembranas, según el polímero de su fabricación:

Geomembranas de PVC Plastificado
  • Geomembranas de Polietileno de Alta Densidad
  • Geomembranas de Polipropileno
  • Geomembranas de Polietileno Cloro Sulfonado
  • Geomembranas de Hules Sintéticos
Las Geomembranas de mayor volumen de aplicación son las No Reforzadas, de Polietileno de Alta Densidad y de PVC Plastificado.
Las Geomembranas de Polietileno de Alta Densidad (PEAD) se fabrican en rollos anchos, de 7.0m o más, y en esta presentación se embarcan al sitio de la obra, donde se unen unos con otros mediante equipo de termofusión y extrusión de soldadura del mismo polímero.
Otro tipo muy usual de Geomembranas, son las de PVC Plastificado, las cuales se instalan mediante la unión en campo, de lienzos prefabricados en plantas industriales, según un despiece planeado, para luego unirse unos con otros en su sitio de ubicación final, a manera de rompecabezas. Esto es posible en las Geomembranas de PVC Plastificado, porque los lienzos pueden ser doblados y empacados en forma de paquetes, sin causar daño al material, como podría ser en otro tipo de láminas que se agrietan al ser dobladas. Lo anterior resulta en instalaciones muy rápidas.
Las técnicas de unión en el sitio de la obra, para  las Geomembranas de PVC pueden ser mediante termofusión, aplicada por una empresa especializada, o mediante aplicación de adhesivos especiales. Este último caso es una gran ventaja en caso de presentarse rupturas en la membrana de manera accidental, posteriormente a su instalación por el proveedor, pues el mismo usuario puede realizar la reparación sin necesidad de gastar en ayuda especializada,  ya que  la técnica de unión con adhesivo es muy sencilla.
La selección del tipo de geomembrana para cada aplicación requiere del análisis de diversas variables:
  • Compatibilidad Química
  • Comportamiento Mecánico Requerido
  • Exposición al Intemperismo
  • Eventual Daño Mecánico y Reparaciones
Las variables indicadas anteriormente no son, sin embargo, las únicas a considerar, requiriéndose generalmente, de una evaluación más completa de la instalación de que se trata, tomando en cuenta que existen situaciones que requieren diseñar de manera más completa, no pudiendo depender exclusivamente de un producto (la geomembrana), para impedir el acaecimiento de situaciones graves, como puede ser, por ejemplo, la fuga de sustancias peligrosas que pueden contaminar el ambiente y amenazar la salud pública, para lo cual se requiere construir SISTEMAS IMPERMEABLES, en vez de simplemente UTILIZAR PRODUCTOS IMPERMEABLES.
El diseño de instalaciones  de ese tipo se lleva a cabo por empresas especialistas y generalmente las soluciones implementadas emplean otros  Geosintéticos además de Geomembranas, en diseños “a prueba de fallas”. 

VENTAJAS DE LAS GEOMEMBRANAS SOBRE IMPERMEABILIZACIONES CON ARCILLA COMPACTADA:

Continuidad
Las capas de arcilla compactada contienen pequeños conductos en su masa, a través de los cuales se establece el flujo de líquidos. Estos conductos se presentan por agrietamiento, al perder  humedad la arcilla. También se presentan conductos horizontales  en la frontera entre las capas compactadas. La razón de esto es que las barreras de suelo no son materiales continuos, sino el producto del acomodamiento y densificación de partículas por el proceso de compactación a que se deben someter.

Muy bajo Coeficiente de Permeabilidad.
Esta propiedad es mucho menor que la correspondiente a arcillas compactadas. Se determina en forma indirecta, a través de la medición de transmisión de vapor a través de la geomembrana. Esto trae como consecuencia que se pueden construir sistemas impermeables con espesores despreciables, en lugar de tener que compactar gruesas capas de arcilla.

Ligereza
Propiedad importante de las Geomembranas desde el punto de vista logístico, ya que se puede lograr la impermeabilización sin grandes acarreos y en lapsos muy cortos.

GEOREDES O GEOMALLAS
Son elementos estructurales que se utilizan para distribuir la carga que transmiten terraplenes, cimentaciones y pavimentos, así como cargas vivas, sobre terrenos de baja capacidad portante, o bien como elementos de refuerzo a la tensión unidireccional, en muros de contención y taludes reforzados que se construyen por el método de suelo reforzado.
Por su funcionamiento, las Georedes son de dos tipos principales:
  • Georedes Biaxiales, que poseen resistencia a la tensión en el sentido de su fabricación (a lo largo de los rollos) y también en el sentido transversal al anterior.
  • Georedes Uniaxiales, que poseen resistencia a la tensión únicamente en el sentido de fabricación. 
Por su Flexibilidad, se tienen dos tipos: 
  • Georedes Rígidas, que se fabrican mediante procesos de pre-esfuerzo del polímero, primordialmente Polipropileno y Polietileno de Alta Densidad.
Georedes Flexibles, fabricadas mediante procesos de tejido de filamentos de alta tenacidad, que fueron previamente sometidos a un alto grado de orientación molecular; se fabrican de Poliéster.
Dado que las  Georedes Uniaxiales se utilizan en estructuras cuyo comportamiento debe garantizarse por lapsos muy largos (de hasta 100 años), sus propiedades relevantes son:
- Resistencia a la Tensión
- Resistencia a Largo Plazo Bajo Carga Sostenida
- Coeficiente de Fricción en contacto con el suelo que refuerza
- Resistencia al Daño Mecánico
- Resistencia a ataque químico y biológico
Las Georedes Biaxiales funcionan mediante mecanismos de interacción con el suelo y los agregados, que les permiten tomar parte de los esfuerzos inducidos durante la construcción, mediante fuerzas de tensión que se desarrollan en el plano del material.
Por ello, las propiedades principales de las Georedes Biaxiales, directamente relacionadas con sus diversas aplicaciones, son:
  • Tamaño de aberturas
  • Rigidez a la flexión
  • Estabilidad de Aberturas
  • Módulo de Tensión
  • Resistencia a la Tensión
GEODRENES
Los geodrenes son drenes prefabricados elaborados mediante la combinación de núcleos de plástico con alta resistencia a la compresión y muy alta conductividad hidráulica, y cubiertas de un geotextil filtrante que impide la intrusión de suelo dentro de los vacíos disponibles para el flujo; su función es captar y conducir líquidos a través de su plano.
Son estructuras continuas y extremadamente delgadas, en comparación con las dimensiones requeridas para construir drenes a base de agregados y tuberías.  
Tipos de Geodrenes, según el Polímero de su Núcleo
  • Núcleo de Poliestireno de Alto Impacto
  • Núcleo de Polietileno de Alta Densidad
Tipos de Geodrenes, según la forma de su Núcleo
  • Núcleos en forma de canastilla
 Contienen una multitud de conos espaciadores que forman canales por los cuales se transporta el fluido captado. El ingreso de los fluidos al producto se realiza por ambas caras del núcleo, cuyo reverso es plano y tiene orificios. 
  • Núcleos en forma de malla
Contienen en ambas caras, series de gruesos cordones  de plástico, paralelos entre sí, que se superponen sobre otra serie de cordones del mismo tipo, formando ángulos agudos, teniendo apariencia de mallas tejidas, con alta proporción de áreas abiertas, uniformes en tamaño.  El flujo del agua en el plano del material se establece a través de los canales resultantes.
El Geotextil filtrante generalmente es del tipo No Tejido, aunque existen variantes para casos especiales en los  que se usan geotextiles tejidos,  por su alto módulo de tensión. 
      Los Geodrenes más gruesos y con mayor capacidad de flujo se utilizan en los hombros de las carreteras  para abatir el nivel freático y de este modo proteger el pavimento o bien para colectar y desalojar el agua captada por capas permeables  del pavimento. Los más delgados se emplean en el respaldo de muros de contención, para cortar líneas de flujo procedentes de filtraciones en la parte superior del relleno contenido por el muro y  así evitar la generación de empujes hidrostáticos sobre el mismo y también para interceptar flujos en laderas.

GEOMANTAS
 
Son láminas relativamente gruesas formadas con filamentos cortos o largos de  plástico, generalmente polipropileno, polietileno o nailon,  de sección rectangular o cónica, simplemente agrupados con ayuda de redecillas, aglutinantes o costuras muy sencillas, o bien fuertemente entrelazados entre sí, que pueden o no incluir capas de  fibras de origen vegetal.  
Se instalan sobre taludes para evitar su erosión, como elementos de protección permanente o temporal, y combinadas o no, con siembra de semilla.
Sus funciones son las de reducir la capacidad erosiva de los escurrimientos, proteger al suelo, acelerar la germinación de especies vegetales implantadas, reforzar las raíces, o varias de ellas.
        Las Geomantas se fabrican con diferentes propiedades pudiendo agruparse de la siguiente manera:
  • Mallas sintéticas delgadas, con baja porosidad y resistencia mecánica limitada, que se utilizan únicamente  como materiales de cubierta, para aplicaciones temporales.
Mallas sintéticas gruesas, con estructura tridimensional, alta porosidad y suficiente resistencia para permitir el llenado de sus poros con suelo.  
  • Mallas sintéticas gruesas, que contienen capas de fibras vegetales, con estructura tridimensional, baja porosidad y suficiente resistencia para permitir el llenado de sus poros con suelo. 
Mallas sintéticas gruesas, con estructura tridimensional, alta porosidad y alta resistencia que además de permitir el llenado de sus poros con suelo, refuerzan el sistema radicular a largo plazo, una vez que se ha desarrollado la vegetación. La resistencia mecánica puede ser aportada por los mismos filamentos sintéticos que forman su estructura o por un elemento de refuerzo adicional.
  • Igual al anterior, pero de menor porosidad por la inclusión en su estructura, de capas de fibras de coco.
GEOCELDAS
 
Las Geoceldas son estructuras tridimensionales de gran peralte y forma romboide, que se utilizan para contener rellenos en taludes, con el objetivo de evitar su deslizamiento y erosión. También se utilizan para confinar materiales dentro de sus celdas y construir plataformas reforzadas, con mayor capacidad de distribución de la carga; en esta aplicación, el producto previene la falla por desplazamiento lateral del relleno bajo las cargas impuestas.
Se fabrican con diversos peraltes y tamaños de abertura de celda, en Polietileno de Alta Densidad y Polipropileno.

GEOCOMPUESTOS DE BENTONITA
 
Resultado de imagen para GEOCOMPUESTOS DE BENTONITASon laminaciones de bentonita de sodio confinada entre dos capas de geotextil. Se usan primordialmente en el confinamiento de substancias peligrosas, como elemento para sellar eventuales perforaciones en las Geomembranas utilizadas como barrera primaria. Se fabrican en rollos que se traslapan y unen entre sí, utilizando bentonita granular bajo los traslapes.
Su empleo requiere revisar la eventual existencia de sales de calcio que pueden afectar a la bentonita contenida en el producto.
Los Geocompuestos de bentonita laminada son materiales muy pesados ( >5 kg/m2) y requieren estar confinados para desarrollar su función sellante de orificios, derivada de la alta expansividad de la bentonita al hidratarse. 

Geomallas Co-extruidas
Uno de los métodos que desde la antigüedad hasta los tiempos actuales se sigue utilizando para aumentar la capacidad de carga de los suelos blandos, es el refuerzo de los mismos con confinamiento lateral de partículas del material que conforma el suelo, aumentando de esta forma la resistencia a la tensión. 
 
Como ya se mencionó, en la antigüedad este efecto se lograba con la
utilización de ramas trenzadas o con troncos colocados en forma ortogonal.
Con la tecnología actual, las geomallas bi-orientadas coextruidas permiten lograr el mismo efecto de confinamiento lateral de los materiales granulares. 
 
Dichas geomallas se fabrican a base de polímeros, formando una red
bidimensional proveniente del proceso de extrusión, en cuyas aberturas se introducen los materiales granulares para generar el proceso de trabazón de agregados. 
 
A continuación se presentan las imágenes de cada una de las geomallas
mencionadas:
 Geomalla Co-extruida Mono-orientada


Figura 1. Geomalla Uniaxial capas granulares (PAVCO) 

Este tipo de geomallas tiene como campos de aplicación los siguientes: 
Refuerzo muros, taludes, terraplenes y diques
Estabilización suelos blandos 
Reparación por deslizamientos y cortes de taludes
Ampliación corona de taludes
Recubrimiento de estribos, muros y aletas de puentes
Muros vegetados o recubiertos con concreto
Geomalla Co-extruida bi-orientada

Figura 2. Geomalla Biaxial capas granulares (PAVCO) 

Esta geomalla presenta su función en los siguientes campos de aplicación: 
Terraplenes en caminos y ferrovías (refuerzo en balasto)
Refuerzo en bases granulares de vías pavimentadas y no pavimentadas
Refuerzo en estructura de aeropistas
Refuerzo para contención en rocas fisuradas 
 
Geomallas en Fibra de Vidrio
Este tipo de geomallas son de tipo flexible y se diseñan para controlar los
efectos de agrietamientos por reflexión, por fatiga o por deformaciones
plásticas en un pavimento asfáltico. Este producto tiene como función principal el aumento de la resistencia a la tracción en una capa asfáltica y de distribuir de manera uniforme los esfuerzos horizontales en una mayor área, lo cual permite la durabilidad de los pavimentos sin que se evidencien grietas a corto plazo.
 
Este producto ofrece un alto módulo de elasticidad mayor incluso que el
módulo de la mezcla asfáltica, lo cual ofrece una gran ventaja respecto a otros métodos pues es precisamente el material con mayor módulo el que asume los esfuerzos generados por las cargas.
 
Igualmente, este material ofrece ventajas por estar constituido de fibra de vidrio cuyo punto de fusión está entre los 800 y 850 °C, lo que permite trabajar conjuntamente con la mezcla asfáltica.
 
A continuación se presenta la imagen de la geomalla biaxial en fibra de
vidrio:
Este tipo de geomalla tiene los siguientes campos de aplicación:  

Control de fisuras por reflexión fisuras subyacentes
Control de ahuellamientos 
Refuerzo continúo para vías con altos volúmenes de tráfico y pistas de
aeropuertos
Reparaciones puntuales en pavimentos
Refuerzo de capas asfálticas sobre losas de concreto
Adicionalmente, este producto logra el incremento de la vida útil de un
pavimento al aumentarse significativamente la resistencia a la fatiga de los
materiales bituminosos, lo cual genera menores costos en mantenimiento. 

 
 
 

No hay comentarios:

Publicar un comentario